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ABSTRACT

Distributive Simultaneous Localizations and Mappi®.AM) helps for multiple agents for exploring abdilding a
global map predicting their locations. The challenig difficult to identify local map overlaps theagents, especially
when their initial relative positions are unknow®Bo, to address this problem, a collaborative (AR)e-work with
liberally moving agents was used without know-hdvheir initial comparative positions. Each agentthe framework

used a camera only as the input device for its Slréde.
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INTRODUCTION

A visual Simultaneous Localization and Mapping (SfL)Ahas been using as for marker less tracking dunraugmented
reality implementations. The term SLAM was formedgveloped by Hugh Durrant and John J. Leonard hwitis
concerned with the applications of building a mdpuaknown environment by a mobile robot while comently
navigating the environment using the map, [1]. Toleotics community also defined the SLAM problemaasagent of
map creator of an unknown site using sensor(s)ewtdincurrently localizing itself in the environmefb localize the
agent properly, an accurate map is required. Tdym® a precise map, self-localization has to besme dn appropriate

way.

A choice of a sensor for SLAM process is also vialeaMost Visual SLAM approaches relied on deteagtin
features and generating sparse maps using inexpensiiversal mobile agents such as image proagdsiols and
cameras, [2]. Dense maps offer more benefits oparse maps such like, better agent communicatiogiter object

recognition, and better scene interaction for augetreality applications.

Many researchers explored on how to use multiptnesg(distributed SLAM) to perform SLAM. It upsuggthe
robustness of SLAM process and minimizes disastréaikires. Challenges in distributed SLAM are liedt
communication bandwidth when sharing informatioween agents and map’s computation overlaps. I tiewly
proposed framework, agents generate a local gaiss@& map applying direct featureless SLAM methdee framework
also extracts features and uses them to detectdlmsprre in local maps and to compute map overtsgteeen agents.

Agents do not use any prior of their original pokeswledge to determine map overlaps, [3].
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LITERATURE VIEWS

SLAM is a procedure by which a robot can build gonoé the required environment and concurrently tedtself with
respect to the map. Different authors like Smitlalehas been introduced the earliest probabilSLié&M algorithm, [3].
Extended Kalman (EKF) filter has the weakness afigatational complexity, nonlinearity and data agsian. In large-
scale environments, it is difficult to avoid incistency [2].And also Smith et al. presented an EEktended Kalman
Filter) oriented solution for the SLAM problem, thia incrementally estimates the landmark positaord agent pose
distribution, [4].Covariance matrix raises with gtity of landmarks. A Monte Carlo Sampling (paridilter) based
approach by Montemerlo et al. named Fast SLAM,ddr@ss above limitations and supported non-lineacgss models

and non-Gaussian pose distributions, [5].

Davidson et.al. have also presented a MonocularaViSLAM (Mono SLAM); a method of capturing the patf
a liberally moving camera while producing a sparseab. [6]. EKF-SLAM & Particle (PF) Filtering comigd for
estimating and featuring initialization. Klein dt i [6] offered, PTAM (Parallel Tracking and Mapg), which is one of
the utmost momentous solutions for visual SLAM. STIHLAM solution predominantly focused on accuratefa%t
mapping in a like environment to Mono SLAM. Its ilementations decoupled localizations and mappintp two
threads. The future tracking and front-end threadgoms estimation, while the back-end performs piragp and also

removing unnecessary key-frames.

Furthermore, Global Bundle Adjustment (GBA) adjdsthe pose of entire key frames. BA changed the pbs
key frames allowing a reasonable rate of explomnat{@]. GBA worked well for with offline Structurérom Motion
(SfM).GBA is relatively expensive, although it'scemtly adopted for monocular visual SLAM solutiofr uniting
information, increasing number of image features fpEme is more beneficial economically than insieg number of
closely placed camera frames, [8]. Moreover, GBfp$d¢o upsurge the number of key features on thp, feading to

dense it.
APPROACHES AND METHODS

Distributed SLAM (DSLAM)

In DSLAM, distributed network which is subject tailtires of nodes and links, sensor efficacy, comatartal resources
and communication bandwidths could be limited, @lh are crucial for map updates and initiate #otraamunications.
To overcome these challenges, a proper and irgelligpproach is required for a DSLAM system. If reportional

locations of these agents are provided by the glpbsitioning sensors (GPS) or agents know thaiations, they can
generate a unique reliable map. It's also compaeigtieasier to govern map overlaps, if the relatviginal poses of all
agents will be known. However, the problem becodiffgult when the kin locations of agents are uokm. Sometimes,

agents continued building local sub-maps until tireet each other, [9].
System Overview

The proposed framework comprises of 2-types ofetidsated nodes that deployed different machines monitoring
node and exploring node. The framework has mulsigloring and a monitoring node at a given timeede nodes used

for communication to bypass messages amidst eaei. ot
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Figure 1: Network of Nodes; Exploring (E) Nodes Conected to a Monitoring (M) Node
and Some e-Nodes were Linked to each Other.

E-nodes are accountable for producing a local nfahe environment/site and send it periodicallyMenode
(i.e.it continuously monitors the map’s updatesnteestigate potential map overlaps).If it gets amrtap among two/pair
explorer nodes, it sends a command signal to lioké nodes and as to merge their maps. As illestf@igure 1, legally e-
nodes are always attached to the monitoring ndde.nhap overlap occurs, 2-exploringnodes can atsalled to each
other. So, in this paper, a poly-user AR applicgatio exhibit the collaborative AR potential of thdramework
development by different authors has been reviewad. also an AR window to each exploring node, willay users to

interact in the same environment was added.
Exploring Node

Using a solitary camera as the merely input devdeeh e-node does semi-dense visual SLAM [10]stt preserves a list

of key-frames and a pose graph to characterize its local map.

 Key Frames

The | ) key frame, Ki consistsof an absolutepose‘zWi o R7, an imageIi , @ map comprising coordinate reciprocals
corresponding to non-negligible intensity gradipixels D;(an inverse depth map), inverse depth varianceVhapd a list
of featured;. Figure 3, below contains a visual representatiol; of two key frames. Features of Ki are computedrwhe
we introduceK; into the pose graph. IK;, | corresponds to a 32 bit globally unique identifdfe combine the globally

unique node identifier and a locally unique framenitifier to generate a globally unique key framhentifier as shown in

Figure 2.
“« l'il_']r't'r:unc identifier >
Node identifier |
1] 20 i)

Figure 2: Globally Unique Key Frame Identifier basel on Node Identifier.
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Figure 3
Fig. 3: we matched features b/n key frarkesindk; superimposed on the images li and Ij (top). We alsow

the pseudo color encod&d andD; (bottom left) and pseudo color encoded Vi andbgtiom right)

e Pose Graph

Pose graph edgeg contain similarity transformatioﬁzsji ,and Y ji constraints. Here,‘z“ 0 R7,zji are relative pose

. . . . th ith . ,
transformations, and the representing covariancebxamongi~ and ! key frames respectively. Boabsolute pose

‘W &likewise transformatioﬁ( I were programmed with a translation (3-components) &ith scale orientation using

(4-components).

e SLAM Process and Features

The SLAM procedure concurrently tracks the caméoagside the present key-frarkgand improves its [and \ based
on its new observations. Once if this camera megnily deviates from th&;, either a new key-frame is created or/and, if
an existing-key frame is selected from the map.tNi&x new key-frame was created, the precedingfk@me used for
tracking is implanted into thpose graph. The pose graph is unceasingly optimizedha background [2].In our

framework, SURF [11] features and SIFT [12] dedorip are used. Real-time performance, given we acoiypute

th
features in key frames. So that, the feature inK; key frame, satisfies,
Vi(Xp) <Tx Di(Xp)Z (1)

Where X, represents feature location. For every salientufeain Fi, the corresponding 3D locatiog, and the

descriptordp are computed

* Intra-Communications of Monitoring Nodes and Exploring Nodes

There are two intra nodes communications; explorioge-to-monitoring and exploring-to-exploring ned®etween
exploring and monitoring nodes, there are threemanication channels. E-node sent its new key frémaong with
featured-i through the key-frames’ channel. Hereafter, evexsepgraph optimization, the pose graph is sentigfirgpose

graph channel. Exploring nodes receive commandsitjtir instructions channel. When receiving a rirggete instruction

from M-node witH® ' , the e-node checked whether there would be animgdedgefh betweerk; andk;vertices of the
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pose graph. If an existing edge is found, it waodilstard the loop closure command. Else, it has lressrted the new

edge and completed the procedure by doing and#ration of pose graph’s optimization.

On the other hand, as displayed in Figure 1 abihnetwo overlapping e-nodes can link/communicatid wach
other. Map overlap correspondences are monitorethdyM-node. Once the connection is made, eachde-sends its
map to its counterpart through map merge channeteQhe map is established, the key-frame correlpares was
directly transformed into new constraints betweesepgraphs ré;ance;.Fig. 4 shows hove; ande;before merging; were

generating their own maps.

Figure 4: Map Construction Process of Two e-Node&ach Exploring Node had its Own
Coordinate System.

RHS’s map of Figure 5 shows, two e-nodes merged nesyt. Once merging completed, each e-node §isten

its counterpart for new key frames and the posplgr increasingly update its map.

Figure 5
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Fig. 5: Resultant maps of two e-nodes after merpitogedure. In e-node on the left, three maps amgead. In e-
node on the RHS, two maps were merged. It's mapkagdrames are shown in yellow and green respelgtilhe maps
and key frames delivered from the other node apgvslin blue and pink, respectively. Constraintshef pose graph were

not displayed here to avoid too much disordered jarthe figure.
*  Modules of Exploring Node

Figure 6 shows the modules between nodes’ commiiomisaand the distributed framework. The Explonmagle contains
of five main modules: tracking, input stream, magpiconstraint-search and optimization moduleshkd¢hese modules
runs in its own thread. The input stream moduleptscall incoming messages including image frakeg frames, map,
pose graph, and commands. And then all image framees transferred to the track-module. Pose grikgyframes, and
map transferred to optimization module so that teefterative optimization, they can be merged im@p. Commands are
treated in the input unit itself. The tracking maaccepts the new frame from input stream moduéketeacks it against
the current key frame. If the current key frameldawo longer be applied to track the present fraamegew key frame will
be generated. The old key frame can be added tpetonap through mapping unit module. The constragarching

module can be used to recover from track failures.

Exploring Mode Features Monitoring Node
Camera Key Frame Poses
L.
Frames L | nput Stream |
e Input Stream

. Commands

| | —~

| Tracking | - ___E'_‘ ——
Sending / ___r""D

| Mapping | :| = ;}___

| |

| |

map for _ h
mierging Fusion Grap

Constraint Search

Map Overlap Detection

Optimization

Key Frames F_ F_i?

ﬁ} ; Pose Graph Ky frame Databases
Exch o for incremental — —
chanaing 7 = =

virtwal objects s o map updating
forarR | Map after merging

Figure 6

Figure 6 The distributed framework. The arrowshedk to the e-node box represent communicationdmivthe
2-exploring nodes.

MONITORING NODE

This nodes’ map overlap detection/identificationdule is responsible for detecting and computingesponding relative
pose between nodes. It also detects loop closueadi exploring node. Monitoring node maintaindNanumber of key
frame databasd3B;. HereN equals to the number of exploring nodes in thenéaork. All incoming key frameK;, are
matched against all these key frame databasesmakehing takes place in parallel il number of threads. The thread

number M (< N) is arranged based on available sysesources.
Key Frame Database

Each key frame database entails key frames of Ioerg node. Each incoming key frankgis matched with entries in
the database using (fast approximate nearest raigRhANN [13] thru featurematching method.If there are more than
10 number of matches wianother keyframe K, it is concluded thatthere is anoverlap between keyframels; andk;. If

these key frames belong to same e-node, a loopreldsfound. Otherwise, the result is submittetheoFusion Graph.
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» Fusion Graph: All obtainable e-nodes are represented as veriticé® fusion graph as depicted in Fig. 7 below.

Cirn

Figure 7

Figure 7: The fusion graph displaying e-nodgs& the number of matching featurec;;{ as theweight of each
edge. In this exampl;,is higherthan other edges (indicated by the thicker edge)eande,is merged first. Moreover,

¢;'s map is also sent g;following direction of the edge.

Assume there is an overlap between key frames Hikgandk,€ef andk eef, whereefrepresent key frames
init"e-node. Then, the fusion-graph comprises an edgdere;. The number of features coordinated betwe;zmd
e;are represented usic;jas shown in Figure 7. Note that been the edge e;anid e;could symbolize matching features

amid many key frame pairs. Assume, the fusion-gegdehaving the largest;;satisfies,
Max(c;;) >m (2)

While m: an empirical-threshold. Nevertheless, th@odes conclude, map overlap avails between esre;drd
e;. Empirically, 120 shared features are found t@alg®od value for m. The RANSAC algorithm [14 used to make the

computation robust to Outliers. Figure3 indicates aof matched features between the 2-keyframk;andk; .

+  Communication with Exploring Nodes: When the m-node detects a map overlay betweerdesiejande;, it
concerns a merge order via the commands chantathoof the nodes. The command contains the relginse
&ji between two nodes. Additionally, the commandatemprises the map overlap key frame correspomsenc
used to compute the relative pose betwe;ére;. Likewise, a loop closure instruction was issugdn e-nodes,
when bothoverlapping key framk; andk;.belong te,. Fusion graph does not look for map overlaps betwe

nodes that are already found overlapping. Thisgmes/issuing merge commande;ande;again.

e Modules of the Monitoring Node: As in Figure 6,the M-node has 3 main modules. ifipat stream module is
receiving key frames and pose graphs from exploniades. These key frames submitted to the map ayverl
detection, which processes these key frames againkiple key frame’s databases. The fusion grapéduto

order e-nodes for map merging.
RESULT AND DISCUSSION

Experimental Setup

For the new systems setup for distributive SLAMnanocular visual SLAM dataset is needed, with midtitrajectories
covering a single scene. Authors made the DIST-Mdataset to evaluate our system. Authors’ experiaiesetup was

designed to describe the real truth of camera gesfisshown in Figure 8 researchers have mounted a Point Eirefly
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MV global shutter camera on a Computer Numeric @dletr (CNC) machine. A 1m x 1.5m scene containivapden
objects was also prepared. And the camera was mal@dy a path roughly 4 minutes each time, whilptwang
periodically its location ground truth. 640x480alksgion camera frames was also captuat 60Hz ancground truth at
40Hz. The CNC Machine has 0.2mmaccuracy in all 3-axes. An open-source ROS node
http://github.com/japzi/rostinyg]was also developid this case to capture the ground truth from TheyG CNC

controller.

Figure 8: Experimental Arrangement Viewing a CameraStraddled on a CNC Machine
Permitting us to Capture Real Information.

Dist Mono Dataset

The dataset contains of 5 sub-datasets. T¢amera motion paths were defined, Path-A, Path-B & Patt#Cthese paths
were on a plane inclined above the scene as ddpictEi-9a. These paths have roughly 10% overlay Zmissimilar
starting points. Two datasets using Path-A, weneegged byrotating the camerzaround its z-axis. In S01-B-0, the
camera scene Y-axis and optical axis was vertical plane. In SO01-B-P20, the researcher rotated the@about its y-

axis by 20 which is demonstrated in Fig-9b.

(a) Motion Paths are in the Plane inclined above thScene.

S01-A-P20 S01-A-0
-

(b) 20 Clockwise Rotation.
Figure 9: Camera Gesture and Its Preliminary turning for Datasets.
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Similarly, we created datasets S01-B-0, S01-B-N2@, S01-C-0 as shown in Table 1.

Table 1: DIST-Mono Dataset

Dataset Path Initial camera rotation
S01-A-D Path A [i]
S01-A-P20 Path A 20 CW
S01-B-0 Fath B [i]
S01-B-NZ0D Path B 20 CCW
S01-C-0 Path C 0

Experimental Procedures

* Experiments I: Two of these datasets were then used to deployeixploring nodes on two separate physical
computers. The monitoring node is deployed on edthomputer. All these computers run on Ubuntu 44.0
operating system. They were linked via a wired eoufhis experiment was reoccurred 100 times, ded t
resultant transform amidst merged 2-maps is condpaith the available ground fact. The yielding cargtive
transformation amidst datasets S01-A-P20 and SOlws recorded as depicted in Table Il (in thisetab was
the average of 96 subsequent trials, ansl the standard deviation). The average erroranslation and average
error in the rotation were 2.7cm and %.8spectively. Moreover, it merged/combined mapsticcessful way in
96 trialsout of the 100 repetitive attempts. The framewogkrbunsuccessful to detect map overlaps only in the
remaining 4-attempts. Once tframework merged2-maps; one e-node displayed its map as in the-highd

side map of Fig-5.

» Experiments Il: Alike Experiments I, the researcher used dat8§&ENE-A-0 and dataset SCENE-B-N20 in 2
unlike e-nodes. After merging of map, each e-noxjgoged its keyframe’s poses in TUM dataset [26%ep0
format. Most importantly, these poses comprise fagyesfrom both exploring nodes. Absolute Trangtatio
RMSE [26] was computed against the ground truthsdjaport the non-deterministic landscape of theidiged
system, here the researchers has run experimebitfiores, &the median outcomewas recorded. In démeesway,
they performed 3-extra experiments with other datasombinations as depicted in Table-lll. Giveanocular
visual SLAM, systems do not capture the scale, tti@y have manually calculated to minimize theRMSi®rin

all experiments.

Figure 10 reveal how estimated key frame poses w@mgpared viz. the ground reality in experimenRad line

segments in the figure reveal the difference betvestimated pose location and ground truth locatsfcthe key frame.

200

ground truth
— S - estimated
-3¢ | — difference
|
[ ~500 |
I: !-‘—\- _
|7 e : - s "----!-l
| | - S JH_..-""
il [T
| sl |
—TI " |
| =
| B
= ! I, -
Ui}-\i - — : 7
50 aop 450 SO0 G50 BOO RGO tOn A0 BEO
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(a) First Exploring Node.
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(b) Second Exploring Node.
Figure 10: Key Frame Poses against Ground Truth.

AUGMENTED REALITY (AR) APPLICATION

As mentioned in section 3.1, the researchers adéedindow to each e-node to test their frameworke AR window,
allows users to add a virtual object (a simple ¢uhetaken example) into its map. This permit theamprove the
collaborative AR performance of the distributed SlLAramework. Each e-nodhasits local map therefore it can
condense thaugmented scene from its standpoint. It has been also kiits pose on the global map. Thiallows it to
render objects added by the other exploring nodesas well. Moreoverexploring nodes can interact with one
another using peer-to-peer communicaticchannels of the framework. Figure 11 displays AR windows2eéxploring

nodes and 2 interactively added cubes.

Figure 11: Same Set of Virtual Objects is Viewed fym 2 Different Exploring Nodes.

CONCLUSIONS

In this review paper, researchers have familiariaedistributed simultaneodocalization andmappingoutline that has
been recognizing map overlaps grounded on an appessbased method. The framework operated withrioo know-
how of relative starting poses of its nodes. Viea &R application, they have been shown that thiaméwork can support

collaborative Augmented Reality applications. Theearchers also have developed a new publicly sibteeslataset and
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used that for an extensive evaluation of the estigtem. Their next step would be improving thelespg node’s SLAM

process by integrating features in pose graph dgaton, which would also help critically in suppiog public datasets as

well. ORB descriptors instead of SIFT descriptarimiprove performance and reduce the network badttiwisage would

be evaluated. Thultimate goal of this framework is to be ported ttruly mobile, resource limiteplatformsand for the

computational nodesto run on suctmobile devices.
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