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ABSTRACT 

Distributive Simultaneous Localizations and Mapping (SLAM) helps for multiple agents for exploring and building a 

global map predicting their locations. The challenge is difficult to identify local map overlaps these agents, especially 

when their initial relative positions are unknown. So, to address this problem, a collaborative (AR) frame-work with 

liberally moving agents was used without know-how of their initial comparative positions. Each agent in the framework 

used a camera only as the input device for its SLAM route. 
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INTRODUCTION 

A visual Simultaneous Localization and Mapping (SLAM) has been using as for marker less tracking during in augmented 

reality implementations. The term SLAM was formerly developed by Hugh Durrant and John J. Leonard which it’s 

concerned with the applications of building a map of unknown environment by a mobile robot while concurrently 

navigating the environment using the map, [1]. The robotics community also defined the SLAM problem as an agent of 

map creator of an unknown site using sensor(s) while concurrently localizing itself in the environment. To localize the 

agent properly, an accurate map is required. To produce a precise map, self-localization has to been done in appropriate 

way. 

A choice of a sensor for SLAM process is also valuable. Most Visual SLAM approaches relied on detecting 

features and generating sparse maps using inexpensive, universal mobile agents such as image processing tools and 

cameras, [2]. Dense maps offer more benefits over sparse maps such like, better agent communications, better object 

recognition, and better scene interaction for augmented reality applications. 

Many researchers explored on how to use multiple agents (distributed SLAM) to perform SLAM. It upsurges the 

robustness of SLAM process and minimizes disastrous failures. Challenges in distributed SLAM are limited 

communication bandwidth when sharing information between agents and map’s computation overlaps. In this newly 

proposed framework, agents generate a local quisi-dense map applying direct featureless SLAM method. The framework 

also extracts features and uses them to detect loop closure in local maps and to compute map overlaps between agents. 

Agents do not use any prior of their original poses knowledge to determine map overlaps, [3]. 
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LITERATURE VIEWS  

SLAM is a procedure by which a robot can build a map of the required environment and concurrently locate itself with 

respect to the map. Different authors like Smith et al. has been introduced the earliest probabilistic SLAM algorithm, [3]. 

Extended Kalman (EKF) filter has the weakness of computational complexity, nonlinearity and data association. In large-

scale environments, it is difficult to avoid inconsistency [2].And also Smith et al. presented an EKF (Extended Kalman 

Filter) oriented solution for the SLAM problem, that it incrementally estimates the landmark position and agent pose 

distribution, [4].Covariance matrix raises with quantity of landmarks. A Monte Carlo Sampling (particle filter) based 

approach by Montemerlo et al. named Fast SLAM, to address above limitations and supported non-linear process models 

and non-Gaussian pose distributions, [5]. 

Davidson et.al. have also presented a Monocular Visual SLAM (Mono SLAM); a method of capturing the path of 

a liberally moving camera while producing a sparsed map. [6]. EKF-SLAM & Particle (PF) Filtering combined for 

estimating and featuring initialization. Klein et al. in [6] offered, PTAM (Parallel Tracking and Mapping), which is one of 

the utmost momentous solutions for visual SLAM. This SLAM solution predominantly focused on accurate & fast 

mapping in a like environment to Mono SLAM. Its implementations decoupled localizations and mapping, into two 

threads. The future tracking and front-end thread performs estimation, while the back-end performs mapping and also 

removing unnecessary key-frames. 

Furthermore, Global Bundle Adjustment (GBA) adjusted the pose of entire key frames. BA changed the pose of 

key frames allowing a reasonable rate of exploration, [7]. GBA worked well for with offline Structure from Motion 

(SfM).GBA is relatively expensive, although it’s recently adopted for monocular visual SLAM solutions. For uniting 

information, increasing number of image features per frame is more beneficial economically than increasing number of 

closely placed camera frames, [8]. Moreover, GBA helps to upsurge the number of key features on the map, leading to 

dense it. 

APPROACHES AND METHODS  

Distributed SLAM (DSLAM) 

In DSLAM, distributed network which is subject to failures of nodes and links, sensor efficacy, computational resources 

and communication bandwidths could be limited, although are crucial for map updates and initiate intra-communications. 

To overcome these challenges, a proper and intelligent approach is required for a DSLAM system. If the proportional 

locations of these agents are provided by the global positioning sensors (GPS) or agents know their locations, they can 

generate a unique reliable map. It’s also comparatively easier to govern map overlaps, if the relative original poses of all 

agents will be known. However, the problem becomes difficult when the kin locations of agents are unknown. Sometimes, 

agents continued building local sub-maps until they meet each other, [9]. 

System Overview 

The proposed framework comprises of 2-types of disseminated nodes that deployed on different machines; monitoring 

node and exploring node. The framework has multiple exploring and a monitoring node at a given time. These nodes used 

for communication to bypass messages amidst each other.  
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Figure 1: Network of Nodes; Exploring (E) Nodes Connected to a Monitoring (M) Node 

and Some e-Nodes were Linked to each Other. 
 

E-nodes are accountable for producing a local map of the environment/site and send it periodically to M-node 

(i.e.it continuously monitors the map’s updates to investigate potential map overlaps).If it gets an overlap among two/pair 

explorer nodes, it sends a command signal to link those nodes and as to merge their maps. As illustrated Figure 1, legally e-

nodes are always attached to the monitoring node. If a map overlap occurs, 2-exploringnodes can also be allied to each 

other. So, in this paper, a poly-user AR application to exhibit the collaborative AR potential of their framework 

development by different authors has been reviewed. And also an AR window to each exploring node, allowing users to 

interact in the same environment was added.  

Exploring Node 

Using a solitary camera as the merely input device, each e-node does semi-dense visual SLAM [10]. It also preserves a list 

of key-������	and a pose graph to characterize its local map. 

• Key Frames 

The 
t h

i key frame, ki consists of	an	absolutepose iwξ ∈
7

R , an image I i , a map comprising z coordinate reciprocals 

corresponding to non-negligible intensity gradient pixels Di(an inverse depth map), inverse depth variance map Vi and a list 

of features Fi. Figure 3, below contains a visual representation of Ki of two key frames. Features of Ki are computed when 

we introduce Ki into the pose graph. In Ki, I  corresponds to a 32 bit globally unique identifier. We combine the globally 

unique node identifier and a locally unique frame identifier to generate a globally unique key frame identifier as shown in 

Figure 2. 

 
Figure 2: Globally Unique Key Frame Identifier based on Node Identifier. 
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Figure 3 

 
Fig. 3: we matched features b/n key frames Ki and kj superimposed on the images Ii and Ij (top). We also show 

the pseudo color encoded Di and Dj (bottom left) and pseudo color encoded Vi and Vj (bottom right) 

• Pose Graph 

Pose graph edges ɛji contain similarity transformations
j iξ ,and ∑ �� constraints. Here, 

j iξ ∈
7

R , ji∑ are relative pose 

transformations, and the representing covariance matrix among 
thi  and 

thj key frames respectively. Both absolute	pose

iwξ
&likewise transformation

j iξ were programmed with a translation (3-components) and with scale orientation using 

(4-components). 

• SLAM Process and Features  

The SLAM procedure concurrently tracks the camera alongside the present key-frame Ki and improves its Di and Vi based 

on its new observations. Once if this camera meaningfully deviates from the Ki, either a new key-frame is created or/and, if 

an existing-key frame is selected from the map. Next, if a new key-frame was created, the preceding key-frame used for 

tracking is implanted into the pose graph. The pose graph is unceasingly optimized in the background [2].In our 

framework, SURF [11] features and SIFT [12] descriptors are used. Real-time performance, given we only compute 

features in key frames. So that, the
thp  feature in Ki key frame, satisfies, 

��(��) 	< � ∗ ��(��)2 (1) 

Where Xp represents feature location. For every salient feature in Fi, the corresponding 3D location Xp and the 

descriptor dp are computed 

• Intra-Communications of Monitoring Nodes and Exploring Nodes  

There are two intra nodes communications; exploring node-to-monitoring and exploring-to-exploring nodes. Between 

exploring and monitoring nodes, there are three communication channels. E-node sent its new key frame Ki along with 

features Fi through the key-frames’ channel. Hereafter, every pose graph optimization, the pose graph is sent through pose 

graph channel. Exploring nodes receive commands through instructions channel. When receiving a ring closure instruction 

from M-node with
j iξ , the e-node checked whether there would be an existing edge 

j iξ between !� and !"vertices of the 
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pose graph. If an existing edge is found, it would discard the loop closure command. Else, it has been inserted the new 

edge and completed the procedure by doing another iteration of pose graph’s optimization. 

On the other hand, as displayed in Figure 1 above, the two overlapping e-nodes can link/communicate with each 

other. Map overlap correspondences are monitored by the M-node. Once the connection is made, each e-node sends its 

map to its counterpart through map merge channel. Once the map is established, the key-frame correspondences was 

directly transformed into new constraints between pose graphs of	��and�".Fig. 4 shows how �� and �"before merging; were 

generating their own maps.  

 

 
Figure 4: Map Construction Process of Two e-Nodes. Each Exploring Node had its Own 

Coordinate System. 
 

RHS’s map of Figure 5 shows, two e-nodes merged map result. Once merging completed, each e-node listens to 

its counterpart for new key frames and the pose graph, to increasingly update its map. 

 
Figure 5 
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Fig. 5: Resultant maps of two e-nodes after merging procedure. In e-node on the left, three maps are merged. In e-

node on the RHS, two maps were merged. It’s map and key frames are shown in yellow and green respectively. The maps 

and key frames delivered from the other node are shown in blue and pink, respectively. Constraints of the pose graph were 

not displayed here to avoid too much disordered junk in the figure. 

• Modules of Exploring Node 

Figure 6 shows the modules between nodes’ communications and the distributed framework. The Exploring node contains 

of five main modules: tracking, input stream, mapping, constraint-search and optimization modules. Each of these modules 

runs in its own thread. The input stream module accepts all incoming messages including image frames, key frames, map, 

pose graph, and commands. And then all image frames were transferred to the track-module. Pose graph, keyframes, and 

map transferred to optimization module so that before iterative optimization, they can be merged into map. Commands are 

treated in the input unit itself. The tracking module accepts the new frame from input stream module and tracks it against 

the current key frame. If the current key frame could no longer be applied to track the present frame, a new key frame will 

be generated. The old key frame can be added up to the map through mapping unit module. The constraint searching 

module can be used to recover from track failures. 

 
Figure 6 

 
Figure 6 The distributed framework. The arrows led back to the e-node box represent communication between the 

2-exploring nodes. 

MONITORING NODE 

This nodes’ map overlap detection/identification module is responsible for detecting and computing corresponding relative 

pose between nodes. It also detects loop closure of each exploring node. Monitoring node maintains an N number of key 

frame databases DBi. Here N equals to the number of exploring nodes in the framework. All incoming key frames Ki, are 

matched against all these key frame databases. The matching takes place in parallel in M number of threads. The thread 

number M (< N) is arranged based on available system resources. 

Key Frame Database 

Each key frame database entails key frames of 1-exploring node. Each incoming key frame Ki is matched with entries in 

the database using (fast approximate nearest neighbor) FLANN [13] thru feature matching method. If	there	are more than 

10 number of matches with another	keyframe	K, it is concluded	that there	is an overlap between keyframes Ki and kj. If 

these key frames belong to same e-node, a loop closure is found. Otherwise, the result is submitted to the Fusion Graph. 
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• Fusion Graph: All obtainable e-nodes are represented as vertices in the fusion graph as depicted in Fig. 7 below. 

 
Figure 7 

 
Figure 7: The fusion graph displaying e-nodes (ei) & the number of matching features (.�") as the weight	of	each 

edge. In this example, ."0 is higher than	other edges (indicated by the thicker edge), so �"and �0is merged first. Moreover, 

." ’s map is also sent to �0following direction of the edge. 

Assume there is an overlap between key frames Kr and !1and !2∈��
0 and !1∈�"

0, where ��
0represent key frames 

in�45e-node. Then, the fusion-graph comprises an edge amid��&�". The number of features coordinated between ��and 

�"are represented using.�"as shown in Figure 7. Note that been the edge amid��and �"could symbolize matching features 

amid many key frame pairs. Assume, the fusion-graph edge having the largest .�"satisfies, 

6�7(.�") > �                                                                                                                                                          (2) 

While m: an empirical-threshold. Nevertheless, the m-nodes conclude, map overlap avails between e-nodes ��and 

�". Empirically, 120 shared features are found to be a good value for m. The RANSAC algorithm [14] is used to make the 

computation	robust to Outliers. Figure3 indicates a set of	matched features between the 2-keyframes, !�and !". 

• Communication with Exploring Nodes: When the m-node detects a map overlay between e-nodes ��and �", it 

concerns a merge order via the commands channel to both of the nodes. The command contains the relative pose 

ξji between two nodes. Additionally, the command also comprises the map overlap key frame correspondences 

used to compute the relative pose between ��&�". Likewise, a loop closure instruction was issued to an e-node�1, 

when bothoverlapping key frames !� and !".belong to�1. Fusion graph does not look for map overlaps between 

nodes that are already found overlapping. This prevents issuing merge command to ��and �"again. 

• Modules of the Monitoring Node: As in Figure 6,the M-node has 3 main modules. The input stream module is 

receiving key frames and pose graphs from exploring nodes. These key frames submitted to the map overlay 

detection, which processes these key frames against multiple key frame’s databases. The fusion graph used to 

order e-nodes for map merging. 

RESULT AND DISCUSSION  

Experimental Setup 

For the new systems setup for distributive SLAM, a monocular visual SLAM dataset is needed, with multiple trajectories 

covering a single scene. Authors made the DIST-Mono dataset to evaluate our system. Authors’ experimental setup was 

designed to describe the real truth of camera gesture. As shown in Figure 8 researchers have mounted a Point Grey Firefly 
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MV global shutter camera on a Computer Numeric Controller (CNC) machine. A 1m × 1.5m scene containing wooden 

objects was also prepared. And the camera was moved along a path roughly 4 minutes each time, while capturing 

periodically its location ground truth. 640×480 resolution camera frames was also captured at	60Hz andground	truth at 

40Hz. The CNC Machine has 0.2mm accuracy in all 3-axes. An open-source ROS node [ 

http://github.com/japzi/rostinyg]was also developed in this case to capture the ground truth from the TinyG CNC 

controller. 

 
Figure 8: Experimental Arrangement Viewing a Camera Straddled on a CNC Machine 

Permitting us to Capture Real Information. 
 

Dist Mono Dataset 

The dataset contains of 5 sub-datasets. Three camera motion paths were defined, Path-A, Path-B & Path-C. All these paths 

were on a plane inclined above the scene as depicted in Fi-9a. These paths have roughly 10% overlay and 3 dissimilar 

starting points. Two datasets using Path-A, were generated by rotating the camera around	its	z-axis. In S01-B-0, the 

camera scene Y-axis and optical axis was on a vertical plane. In S01-B-P20, the researcher rotated the camera about its y-

axis by 20◦ which is demonstrated in Fig-9b. 

 
(a) Motion Paths are in the Plane inclined above the Scene. 

  
(b) 20◦ Clockwise Rotation. 

Figure 9: Camera Gesture and Its Preliminary turning for Datasets. 
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Similarly, we created datasets S01-B-0, S01-B-N20, and S01-C-0 as shown in Table 1. 

Table 1: DIST-Mono Dataset 

 
 

Experimental Procedures  

• Experiments I: Two of these datasets were then used to deploy two exploring nodes on two separate physical 

computers. The monitoring node is deployed on a third computer. All these computers run on Ubuntu 14.04 

operating system. They were linked via a wired router. This experiment was reoccurred 100 times, and the 

resultant transform amidst merged 2-maps is compared with the available ground fact. The yielding comparative 

transformation amidst datasets S01-A-P20 and S01-B-0 was recorded as depicted in Table II (in this table, µ was 

the average of 96 subsequent trials, and σ is the standard deviation). The average error in translation and average 

error in the rotation were 2.7cm and 5.3◦, respectively. Moreover, it merged/combined maps in successful way in 

96	trialsout of the 100 repetitive attempts. The framework been unsuccessful to detect map overlaps only in the 

remaining 4-attempts. Once the framework	merged2-maps; one e-node displayed its map as in the right-hand 

side map of Fig-5. 

• Experiments II: Alike Experiments I, the researcher used dataset SCENE-A-0 and dataset SCENE-B-N20 in 2 

unlike e-nodes. After merging of map, each e-node exported its keyframe’s poses in TUM dataset [26] pose 

format. Most importantly, these poses comprise keyframesfrom both exploring nodes. Absolute Translation 

RMSE [26] was computed against the ground truth. To support the non-deterministic landscape of the distributed 

system, here the researchers has run experiment for 5-times, &the median outcomewas recorded. In the same way, 

they performed 3-extra experiments with other dataset’s combinations as depicted in Table-III. Given monocular 

visual SLAM, systems do not capture the scale, then, they have manually calculated to minimize theRMSE errorin 

all experiments. 

Figure 10 reveal how estimated key frame poses were compared viz. the ground reality in experiment-3. Red line 

segments in the figure reveal the difference between estimated pose location and ground truth location of the key frame. 

 
(a) First Exploring Node. 
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(b) Second Exploring Node. 

Figure 10: Key Frame Poses against Ground Truth. 
 

AUGMENTED REALITY (AR) APPLICATION  

As mentioned in section 3.1, the researchers added AR window to each e-node to test their framework. The AR window, 

allows users to add a virtual object (a simple cube, in taken example) into its map. This permit them to prove the 

collaborative AR performance of the distributed SLAM framework. Each e-node has	its local map therefore it can 

condense the augmented scene from its standpoint. It has been also knownits	pose on the global map. This allows it to 

render objects added	by the other exploring	nodesas well. Moreover, exploring	nodes can interact with one 

another	using peer-to-peer communication channels of the framework. Figure 11 displays AR windows of 2-exploring 

nodes and 2 interactively added cubes. 

 
Figure 11: Same Set of Virtual Objects is Viewed from 2 Different Exploring Nodes. 

 
CONCLUSIONS 

In this review paper, researchers have familiarized a distributed simultaneous localization and mappingoutline that has 

been recognizing map overlaps grounded on an appearance-based method. The framework operated with no prior know-

how of relative starting poses of its nodes. Via the AR application, they have been shown that their framework can support 

collaborative Augmented Reality applications. The researchers also have developed a new publicly accessible dataset and 
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used that for an extensive evaluation of the entire system. Their next step would be improving the exploring node’s SLAM 

process by integrating features in pose graph optimization, which would also help critically in supporting public datasets as 

well. ORB descriptors instead of SIFT descriptors to improve performance and reduce the network bandwidth usage would 

be evaluated. The ultimate	goal of this framework is to be ported to truly mobile, resource limited platformsand for the 

computational nodes to	run on such mobile devices. 
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